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ABSTRACT

Dynamic soil properties around axially vibrating piles are generally non-uniform even in homogeneous soils. This is
a result of the non-linear soil reaction to the radially decreasing stresses and strains induced by the pile, as well as the
slippage at the pile-soil interface. To improve the accuracy of analytical computations, this paper focusses upon the
nonlinear soil response anticipated in the field and establishes the radial variation of soil properties based on common-
ly reported experimental data. In addition, solutions are presented for the corresponding impedance of the springs
and dashpots used to represent soil in a Winkler-type analysis of axially vibrating piles. Slippage at the pile soil inter-
face is taken into account assuming a rigid-perfectly plastic contact between the pile and the soil. To assess the relative
effects of soil nonlinearity in practical applications, analytical results for different pile, load and soil conditions are
presented in the form of diagrams and simple approximate relationships.
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INTRODUCTION

Analysis of the dynamic axial response of piles is com-
monly based on the Winkler approach, initially con-
ceived and used with success to simulate the response of
statically loaded piles. Namely, the soil surrounding the
pile is replaced by a series of independent springs and
dashpots with frequency dependent characteristics (e.g.
Novak 1974 and 1977). The basic assumption underlying
this approach is that the vibrating pile generates exclusive-
ly shear waves (SV) propagating radially outwards in the
horizontal plane. Thus, radial soil displacements are
neglected and the soil is considered to deform axisym-
metrically, in pure shear.

The frequency dependent moduli of the Winkler
springs and dashpots, corresponding to the dynamic soil
impedance, are obtained from the solution of the sim-
plified elastodynamic problem of a unit thickness rigid
and massless cylindrical pile element oscillating within a
horizontal soil layer of infinite lateral extend. For the
sake of simplicity, most available solutions assume that
dynamic soil properties are radially uniform, although
this is not true even for piles embedded into homogene-
ous soil deposits. In fact, the dynamic soil stiffness is low-
er and the hysteretic damping ratio is higher in the vicini-
ty of the pile as compared to the far field. This is a result
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of the non-linear soil reaction to the radially decreasing
stress and strain amplitudes induced by the vibrating
pile, as well as of the slippage that may develop between
the pile and the soil.

The first relevant solutions to this problem were
presented by Novak and Sheta (1980), for the case of
reduced shear modulus and increased hysteretic damping
in a massless, narrow, annular boundary zone around
the pile. The mass of the boundary zone was neglected on
purpose in order to prevent fictitious wave reflections
from the interface between the inner boundary zone and
the free field. A later analysis of the same problem by
Veletsos and Dotson (1986) included the inertia of the
boundary zone. The solutions obtained in this way fluctu-
ate with frequency due to the fictitious reflections, but
reveal clearly that the inertia in the boundary zone has a
quite substantial effect and should not be neglected. In
order to eliminate the undesirable effects of internal wave
reflection, the discontinuous variation of shear modulus
with radial distance was later replaced by continuous,
monotonically increasing variations (Gazetas and Dobry,
1984; Veletsos and Dotson, 1988; Dotson and Veletsos,
1990).

All previous solutions outline the potential effects of
radial soil heterogeneity, but only in qualitative terms.
This is because the assumed variations of soil properties
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are merely hypothetical and cannot be related to actual
loading, pile and soil conditions encountered in practice.
To overcome this shortcoming, one should first compute
the radial distribution of stresses and strains in the soil
around the pile, consequently determine the compatible
shear modulus and hysteretic damping ratio, and finally
solve the problem of dynamic pile-soil interaction.

The general feasibility of this approach has been recent-
ly demonstrated by Michaelides et al. (1997). Along the
same lines, this paper proceeds with a refined simulation
of the non-linear soil response and derives the corre-
sponding variation of dynamic soil properties, as well as
the moduli of the Winkler springs and dashpots. Im-
plementation of the results presented herein to the com-
putation of the dynamic axial response of piles is briefly
discussed in Appendix I.

BASIC TERMS AND METHODOLOGY

Effect of Soil Nonlinearity

Figure 1 defines the basic terms used in the presenta-
tion and illustrates the mechanisms leading to radial het-
erogeneity around axially vibrating piles embedded in a
layered soil. During application of static loading P, on
the pile head, shear stresses 7, develop on vertical and
horizontal planes which decrease with radial distance r
from the pile axis. Once a harmonic load Pe™’ is added,

dynamic shear stresses te™' are superimposed to the
static ones, which also decrease in amplitude with radial
distance away from the pile axis. Due to soil nonlineari-
ty, the associated secant shear modulus G and the hys-
teretic damping ratio ¢ are functions of the applied shear
stresses and strains, and consequently they vary radially
even if the initial soil properties are homogeneous.

To determine the distribution of G and ¢ for actual
pile, soil and loading conditions, it is first necessary to es-
tablish simple approximate relationships for the radial
variation of the dynamic shear stress amplitudes around
cylindrical pile elements. The corresponding values of
shear modulus and hysteretic damping ratio are conse-
quently determined based on two different sets of stand-
ardised experimental results from resonant column
tests, for soils of different plasticity. Finally, the dynamic
impedance of the soil around an axially vibrating pile seg-
ment is computed analytically by solving the elasto-dy-
namic equilibrium problem for the radial distribution of
soil properties established previously. Soil impedance is
expressed in complex form, as:

L=K,+iwC, 1)

where the stiffness parameters K, and C, correspond to
the moduli of the equivalent Winkler springs and
dashpots respectively.
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Fig. 1. Non-linear soil effects on dynamic soil properties: (a) Static and dynamic shear stresses in the soil; (b) Non-linear dynamic response of soil
elements; (c¢) Radial variation of shear modulus and hysteretic damping ratio
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Fig. 2. Winkler representation of dynamic soil impedance and slip-
page at the pile-soil interface via an equivalent-linear spring and
dashpot coupled to a rigid-perfectly-plastic slider

Effect of Slippage at the Pile-Soil Interface

In the previous outline it has been assumed that the
pile element remains in firm contact with the soil through-
out dynamic loading. Actually, slippage will occur
whenever the sum of static and dynamic shear stresses ap-
plied at the pile-soil interface exceeds the unit skin fric-
tion f. Rigorous evaluation of this effect on the non-
linear dynamic stiffness of the pile element requires de-
tailed modelling of the cyclic response of the interface
and numerical implementation. However, to maintain
the simplicity sought in this article, the relative effect of
slippage is established based on the approximate model
of Fig. 2: the soil is replaced by an equivalent linear
spring-and-dashpot system with dynamic impedance I,
and the pile-soil interface is replaced by a rigid-plastic
slider of yield load F=nr Df where D is the pile diameter.
This is equivalent to an assumption that unloading-
reloading of the pile-soil interface follows the Masing
criteria for cyclic loading (Masing, 1926).

RADIAL VARIATION OF STATIC AND DYNAMIC
SHEAR STRESSES

Static Shear Stresses

The static shear stresses in the soil surrounding an axi-
ally loaded pile element are expressed as (Baguelin and
Frank, 1979; Randolph and Wroth, 1978):

Tstzfst,i(R/r) (2)

where 7= 1,(R) is the shear stress at the pile-soil inter-
face and R is the pile radius. With very good proximity,
Eq. (2) is valid for homogeneous as well as for laterally
heterogeneous soils and suggests that the radial distribu-
tion of static shear stresses is not sensitive to the corre-
sponding variation of soil properties.

Dynamic Shear Stresses in Homogeneous Soil

To compute the dynamic shear stresses, it is assumed
that an axially vibrating cylindrical pile element generates
only shear waves (SV) which propagate laterally under axi-
symmetric conditions. In that case, the equilibrium of
shear and inertia forces acting on an elementary soil ring
around the pile leads to the following differential equa-
tion of motion: .

G(d*W/dr*)+(dG/dr+G/r)dW/dr=pd*W/dt* (3)

where W=W|(r) is the vertical displacement, p is the
mass density and G=G(r) is the shear modulus of the
soil. For harmonic excitation with circular frequency w
(rad/s), and a homogeneous soil with constant hysteret-
ic damping ratio £(r)=¢; and shear modulus G(r)=G,,
the solution of Eq. (3) takes the form (e.g. Morse and In-
gard, 1968):

W=A[Jo(e)+i Yo(c)]e " €]

where a=cwr/V; is a non-dimensional frequency
parameter, V;=(G/p)'/? is the shear wave velocity of the
soil, Jo and Y, are zero order Bessel functions of first and
second kind respectively, and A is a constant of integra-
tion.

The dynamic shear stress amplitude 7 corresponding
to the displacement W is:

=G;|dW/drl
or
7= =Gi(Aw/ V)T @)+ Yi ()] &)

where J; and Y] are first order Bessel functions of the first
and second kind respectively. Alternatively, in order to
maintain the form of the respective relationship for the
static shear stresses, Eq. (5) is written as:

1=1(R/r)F () 6

where 7,=1(R) is the dynamic shear stress amplitude at
the pile-soil interface and

F(@=(a/a)[TH)+ Y]/ [T} )+ YHe)]>  (7)

with a;=wR/ V.

Figure 3 shows the variation of the frequency depend-
ent parameter F(«) for different values of «;. It is ob-
served that, for the values of «; of practical interest (i.e.
a;< 1.0), F («) may be computed from the much simpler ex-
pression:

Fla)= 1.0 for
* a®  for

a<l1.0

a=1.0.

®

Equation (8) suggests that, F («) increases monotonically
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Fig. 3. Effect of non-dimensional frequency parameter oon the radial
variation of dynamic shear stress amplitude

above unity as the non-dimensional radial frequency
parameter o becomes gradually higher. In turn, this im-
plies that the attenuation of dynamic shear stress ampli-
tude is slower than that of static stresses, the difference in-
creasing with the frequency of dynamic loading.

Dynamic Shear Stresses in Heterogeneous Soil

Equations (6) and (8) have been derived for the ideal
case of an initially uniform distribution of shear modulus
and hysteretic damping ratio in the soil. However, they
can also be applied to compute the radial variation of soil
properties in the case of non-uniform distributions of ini-
tial shear modulus and damping assuming that, as for
static stresses, dynamic stress amplitudes are not sensitive
to the exact variation of soil properties.

This assumption is evaluated in Fig. 4, where the solu-
tions obtained for the radial distribution of dynamic
shear stress amplitudes in homogeneous soils are com-
pared to two alternative solutions for laterally heter-

MICHAELIDES ET AL.

ogeneous soils with initial shear modulus and hysteretic
damping ratio expressed in complex form as:

G*=G{1+i@2&)}(r/R)" )

with m=2/3 and m=1. The detailed expressions for the
radial distribution of dynamic stresses in these cases are
summarised by Michaelides et al. (1997). The overall
agreement between the solutions for homogeneous and
heterogeneous soils is remarkably good, especially if one
considers the extremely different distributions of shear
modulus and hysteretic damping ratio assigned to the
soil.

RADIAL VARIATION OF SHEAR MODULUS

In principle, the dynamic stress-strain response of the
soil depends upon the static as well as the dynamic shear
stress amplitudes. However, for moderate and low inten-
sities of dynamic loading, one may overlook the effect of
static shear stresses and focus upon the effect of dynamic
shear stress or strain amplitudes. This approach is sug-
gested by the well known Masing criteria (Masing, 1926)
for unloading-reloading of soils and it is also substanti-
ated by broad experimental evidence (e.g. Seed and Idriss,
1970; Iwasaki et al., 1978; Ishihara, 1982; Andersen et
al.; 1988, Sagaseta et al., 1991). In fact, when the dynam-
ic shear strain amplitude y in the soil is lower than 1073
or 1072, it is customary to describe the degradation of
shear modulus by nonlinear relationships in terms of y.

Figure 5 presents the experimental curves proposed by
Vucetic and Dobry (1991) to describe the degradation of
shear modulus ratio G/ Gmax With p, where Gnax denotes
the shear modulus of the soil at very small shear strain
amplitudes (y<107%). According to these curves, the
main factor which controls the G/ Guax-y relationship is
soil plasticity, expressed via the plasticity index /p. Name-
ly, for the same dynamic shear strain amplitude, the

1.0

proposed expressions (Egs. 6,8,
analytical solution (m=0)
analytical solution (m=2/3)

analytical solution (m=1)

20 30
r/R

Fig. 4. Comparison of simplified relationships for the radial variation of dynamic shear stress amplitude to analytical solutions for homogeneous

(m=0), as well as for heterogeneous soil (n=2/3 and 1)
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Fig. 5. Experimental curves for the non-linear variation of dynamic
shear modulus versus shear strain amplitude proposed by Vucetic
and Dobry (1991)

shear modulus degrades less as the value of /p increases.

More recently, Ishibashi and Zhang (1993) proposed
the following empirical relationships to predict the reduc-
tion of shear modulus with dynamic shear strain ampli-
tude:

0.000102+n
G/ Gpax=0.54 1+tan £|0.492 In ——————| + g™ (10)
with
0.000556
m=0.272{1—tan A 0.4lnT
x exp (—0.0145/p'?) (11)
and
0.0 for Ip=0
3.37x107¢/p"*%* for O<ip<I15
n= (12)
7.0x1077p'*%  for 15<ip=<70
2.7%x1073pt5  for Ip>70.

This relationship is qualitatively similar to the experimen-
tal curves of Fig. 5, with only one difference: the effect of
soil plasticity is now combined with the effect of effective
confining pressure g§. However, the additional effect of
o is limited to non-plastic or low-plasticity soils and can
be effectively overlooked for high plasticity soils with
Ip>50%.

For the purposes of this study, the non-linear variation
of shear modulus is expressed by the following general
form:

G/ Gunax=1—(BYG/ Gnax)* ™ exp (—Ip/ 1) 14)

where Ip is entered in percent (%), and the coefficients B
and A are determined from fitting Eq. (14) to the availa-
ble experimental data. For instance, the following values
were used to obtain an average fit of the experimental
curves by Vucetic and Dobry (1991) and the analytical ex-
pressions by Ishibashi and Zhang (1993):

2200 for Vucetic and Dobry (1991)
600 for Ishibashi and Zhang (1993)
(average for g =50-+400 kPa)

B= (15)
and

21.5+0.25/p for Vucetic and Dobry (1991)

125 for Ishibashi and Zhang (1993) (16)

(independent from o§).

A=

Typical predictions of shear modulus degradation based
upon Eq. (14) are compared to the experimental curves
of Vucetic and Dobry (1991) and the relationships of
Ishibashi and Zhang (1993) in Fig. 6.

To determine the radial variation of shear modulus,
Eq. (14) is re-written in terms of the dynamic shear stress
amplitude 7:

G/Gmax= 1 —-(BT/ GmaX)O.72 €Xp (_lp/l) (17)

Then, introducing Eq. (6) for the radial distribution of z,
the variation of shear modulus with radial distance is ex-
pressed as:

G/ Gunax=1—{A(R/r)F (a)}*™ (18)
where
A=B(7i/ Gnax) exp [—1.39(Ip/ 1)]. 19)

Since the dynamic shear stress amplitude at the pile-soil
interface 7;is a fraction of the ultimate skin friction f, the
cyclic loading intensity factor A is also written as:

A=Bu(f/ Gmax) exp [—1.39%(Ip/ )] (20)
where
u=1/lf (=<1.0). @2n
At the pile soil interface (r=R), Eq. (18) yields:
Gi/ Guax=1—{AF (;)}*™ (>0). (22)

Taking into account that for usual soil and loading condi-
tions a;< 1.0 and consequently F(co;)=1.0, Eq. (22) im-
plies that A ranges between 0.0 and 1.0.

Figure 7 shows the radial variation of shear modulus
ratio G/ Guay for different combinations of the loading in-
tensity parameter A and the frequency parameter o;. It is
observed that:

(a) The radial variation of shear modulus is most rapid
in the immediate vicinity of the pile, within a dis-
tance of two to four pile radii. At larger distances,
the rate of change is substantially reduced and the
shear modulus tends asymptotically to the corre-
sponding free field value (G— Guax).

(b) The overall degradation of shear modulus increases
as the loading intensity and frequency increase.

(c) At the pile-soil interface, the shear modulus ratio
G/ Gumax is a unique function of A, i.e. it is independ-
ent of the loading frequency parameter «;. This ob-
servation is also substantiated by Eq. (22).

NI | -El ectronic Library Service



The Japanese Geot echni cal

Soci ety

134

1.0

MICHAELIDES ET AL.

[ proposed relation
- (Egs. 14,15,16)
0.5 |

- Vucetic
s & Dobry (1991)

Ishibashi
& Zhlang (1993)

drndekededl

G/Gppax

et bt 0} MR |

0.0

G/Gpax

Ip=50%
T gl bt |

0.0

- Ip=100%

Sl ool ! eaordmmiominedodaloh

0.001 0.01 0.1
Shear Strain Amplitude, y(%)

0.0001

1 0.0001

0.001 0.01 0.1 1
Shear Strain Amplitude, y(%)

Fig. 6. Comparison of proposed G/ G,,,-y relationship to empirical relationships proposed by Vucetic and Dobry (1991) and Ishibashi and Zhang

(1993)
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Fig. 7. Radial variation of dynamic shear modulus: (a) Effect of loading frequency a;; (b) Effect of loading intensity 4

RADIAL VARIATION OF HYSTERETIC DAMPING
RATIO

The experimental curves proposed by Vucetic and Dob-
ry (1991) to describe the variation of hysteretic damping
ratio & with dynamic shear strain amplitude y, for soils of
different plasticity, are shown in Fig. 8(a). In contrast to
the shear modulus behavior, the value of £ corresponding
to a given level of y decreases as the soil becomes more
plastic. The corresponding relationship between & and
G/ Guax is shown in Fig. 8(b). It is observed that ¢
decreases as G/ Gnax increases, in a smooth nearly linear

manner. Soil plasticity appears to affect the é-G/ Guax
relationship, but much less than the &-y relationship in
Fig. 8(a).

The corresponding analytical expressions of Ishibashi
and Zhang (1993) draw upon the observation that the
variation of ¢ is influenced by the same factors as that of
G/ Guax. Hence, using Eq. (10) to compute the shear
modulus ratio, the damping ratio is expressed as:

1+exp (—0.01451p'?)
¢= p
X [0.586(G/ Ginax)* — 1.547(G/ Gmax) +11.

(23)
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30 Figure 9 compares Eq. (23) to the experimental curves of
- Fig. 8(b). The observed differences are relatively small
?25 and concern mainly non-plastic soils. Furthermore, the
s average of the two sets of data may be fitted by the follow-
“(;f 20 ing analytical expression:
§ 15 ¢=0.30g(Ip)[1—0.77(G/ Gmax)I* (24)
§: 10 with
8 9(Ip)=0.60+0.40 exp [—0.025(/p)]. (25)
5
@ The radial variation of damping ratio is computed from
ol el Eq. (24), with the modulus ratio expressed in terms of the
0.001 0.01 0.1 1 10 radial distance (Eq. (18)):

Shear Strain Amplitude, y (%)
£=0.30g({p)[0.23+{0.77 A(R/ r)F (0))}*7*12. (26)

) Figure 10 shows the radial variation of hysteretic damp-
0% ing ratio resulting from Eq. (26). To focus upon the
effects of the loading intensity parameter A and the fre-
20 |3 quency parameter «;, the damping ratio has been divided
" 509 by the plasticity dependent factor g(p). As in the case of
 100% the shear modulus ratio, it is observed that, for all combi-
152200 nations of A and «;, the radial variation of damping ratio
is most rapid in the immediate vicinity of the pile, within
a distance of two to four pile radii. At larger distances,
the rate of change is substantially reduced and the damp-
0 ‘ ‘ . . | ‘ , ' . ing ratio tends asymptotically to the‘c.orresponding f_ree
0.0 0.5 10 field value [¢(—0.016¢(/p)]. In addition, the damping
G/Grax ratio at the pile-soil interface é,=¢(R) is independent of

the loading frequency parameter «;.

30

Damping Ratio, & (%)

-
o
T T T T

Fig. 8. Experimental curves for the non-linear variation of hysteretic
damping ratio proposed by Vucetic and Dobry (1991): (a) &(%)-y
relationship; (b) £(%)-G/ G, relationship
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Fig. 9. Comparison of proposed &(%)-G/ G, relationship to empirical relationships proposed by Vucetic and Dobry (1991) and Ishibashi and
Zhang (1993)
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Fig. 10. Radial variation of hysteretic damping ratio: (a) Effect of loading frequency a; (b) Effect of loading intensity A

NON-LINEAR DYNAMIC SOIL IMPEDANCE

The dynamic soil impedance is derived from solution
of a differential equation of motion for a vertically ex-
cited inhomogeneous soil layer enclosing a pile element
of unit thickness. However, a rigorous solution for this
equation is not possible for the variation of soil proper-
ties derived previously. Hence, the soil around the pile is
divided into a small number of zones, so that simpler
relationships can be employed to fit the soil properties in
each zone. Here, it was found sufficient to use four zones
with inner bounds at radii 7o=R, ri=2R, rn=6R and
r;=30R (Fig. 11). The complex shear modulus of the
zones is defined as:

G*(N)=Gr){1+2iE(r)Hr/r)™ (n=0,1,2,3) (27)
log {G(ru+1)/ G(ra)} 10g (rasi/ 1) (n=0,1,2)
0.0 (n=3)

and
(28)

while the corresponding hysteretic damping ratio is de-
fined from Eq. (24).

For each zone, the general solution of Eq. (4) is written
as (Gazetas and Dobry, 1984; Veletsos and Dotson 1986):

Wn(r) = ( _m"/z[AnHEcl,?—l(Kn/lnc}z/K")
+BnH§c23—l(KnlnCrlz/K")] (29)

where {,=r/rn, Kn=2/Q2—my), HY and H? are Hankel
functions of order x and first and second kind respec-
tively, An=a,/(1+2i&,), an=wr,/ V, and V, is the shear
wave velocity at the inner boundary of each zone. The in-
tegration constants A,, B, are determined so that stresses
and displacements are continuous at the borders of the
zones, while displacements become zero at a very large
radial distance (r— ).

Consequently, the impedance of the soil slice around
the pile is determined as:

L=—2nG¥(dW/dr),=zr

my

(30)

o

"Exact" Variation |

— Damping § S

14

0.0

10 100

r/R

Fig. 11. Example fitting of dynamic soil properties used for the analyt-
ical computation of soil impedance (4,=0.50, 4=0.50)

or

L,=2nG¥ Ao{ AoH & (K0ho) + BoH £ (0ho)}  (31)

where

G =Gi(1+2i&). (32)

Equation (31) represents a complex function which is
commonly written in the simplified form:

L=K;+iwC.. (33)

The real and imaginary parts of the dynamic soil im-
pedance, K, and C,, are shown in Fig. 12 for different
values of the loading intensity parameter A, the plasticity
index Ip and the frequency parameter ;=wR / Vg, where
Vy denotes the shear wave velocity of the free-field. For
the sake of a generalised presentation, K, and C, are
shown in a non-dimensional form, with reference to the
pile radius R, the frequency of loading w, the free-field
shear wave velocity Vy and the corresponding shear
modulus Gy (= Gnmax)- It is observed that soil nonlinearity
may reduce drastically the moduli of Winkler springs and
dashpots K, and C;. In general, the reduction is larger for
(a) high frequency loading, and for
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(b) large values of the parameter A, corresponding to
more intense dynamic loading but also to less plas-
tic soils which degrade faster with increasing cyclic
strain amplitude (e.g. Fig. 5).

The plasticity index Ip has a minor direct effect, but

affects indirectly the analytical predictions through the

loading intensity parameter A.

The relative contribution of the real (in-phase) and the
imaginary (out of phase) parts of soil impedance is eval-
uated in Fig. 13 for two specific values of the loading in-
tensity parameter: A=0 (linear) and A4=0.50. In both
cases, the imaginary part of soil impedance dominates
over the real part, except for very low loading frequen-
cies. This observation implies that most of the reaction to
the axial oscillation of a pile element comes from the iner-
tia of the surrounding soil rather than from its stiffness.
Naturally, this trend is reversed as the frequency of oscil-
lation is reduced and the loading changes gradually from
dynamic to quasi-static.

In Fig. 14, the analytical predictions are normalised
against the corresponding values for A4 =0, e.g. the linear
elastic solutions for a homogeneous soil with the non-
degraded properties of the free-field. In an approximate
form, these data may be described by the following
closed-form relationships:

= 0.1

0.3

cy/ Cz|

0.0 . T
01 1.0 3.0
a=wR/Vg

Fig. 14. Comparison between analytical and closed-form approxi-
mate relationships for the prediction of the (normalised) dynamic
soil impedance parameters K, and C,

K./ K, =(1+1.20A4)" 1—&—621— ;% (34
z Z,l_( . (1_/1) ai
C,/ C,i=1—0.84 A(1+0.66 log a;) (35)

K, ;and C,, denote the impedance parameters for A4=0,
and may be expressed in closed form as (Makris and
Gazetas, 1993):

K.,=1.8G;(1+0.5Va) (36)
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Cz,l = (Cz, I)radiation + (Cz,l)hysteresis
=2.4a; "R pVy+2&K,1] @ 37

where £=0.016g(/p) denotes the free field value of £.
Equations (34) and (35) are shown with dotted lines in
Fig. 14 in comparison to the relevant analytical solu-
tions, while Eqgs. (36) and (37) are compared to the analyt-
ical solutions for A =0 in Fig. 12.

The effect of hysteretic damping on the impedance
parameters K, and C, is evaluated in Fig. 15. Two sets of
analytical predictions are compared: one that consistent-
ly takes into account the hysteretic damping and another
that ignores it. Except for low values of the non-dimen-
sional frequency parameter a; (<0.20), the difference be-
tween the two sets of predictions increases with loading
intensity, but remains overall low in proportion to the
values of K and C;. This suggests that, as for homogene-
ous soils, the major mechanism leading to loss of energy
in axisymmetric vibration problems is radiation to the
free field rather than hysteretic energy dissipation in the
soil. For the low values of @;, material damping appears
to be important with regard to the dashpot modulus C..
However, even in this case, the effect of material damp-
ing on the spring modulus K, and, by extension, on the
magnitude of soil impedance I is still small.

3
2
=
o
S~ =
N
4
1
0 L L 1 1 1 i 1 i L
0.0 0.5 1.0
a=wR/ Vg
4
- = = with material damping
without material damping
e 3
>
Q.
14
Eo2
o~
=~ — =
N - A =0 (linear)
(] 1k
- A=0s
0 1 1 1 i 1 i i " 2
0.0 0.5 1.0
g, =wR/ Vg

Fig. 15. Effect of material damping on non-linear dynamic soil im-
pedance parameters K, and C,

EFFECT OF SLIPPAGE AT THE PILE-SOIL
INTERFACE

The previous analysis is based on the assumption that
no slippage takes place between the pile and the soil.
When this occurs, the equivalent impedance of the soil is
drastically reduced, since the displacement of the pile seg-
ment and the hysteretic energy loss corresponding to a
given dynamic loading amplitude may increase sig-
nificantly.

Figure 16 shows the elasto-plastic load-displacement
relationships corresponding to the spring and slider
model which is used here to simulate the cyclic response
of the pile-soil interface. Under loading with controlled
(constant) static displacement J, and dynamic displace-
ment amplitude *J, slippage may occur under one of the
following two conditions:

(a) The peak external load P+ P is larger than the yield

|
| pile
®ot-5) b,b'_j element
@) ! :
a
o U
| |
(Bgtt8) ¥ I
c,c'
| I
(b) Pa
backbone
curve a
w0
AL
: >
: S5 5
4 <
7
‘_,JKZ C
- -l -F
© PA K

Fig. 16. Simplified simulation of the effects of slippage at the pile-soil
interface: (a) Winkler model of pile element; (b) One-way slippage
with P,+P>F and P<F; (c) Two-way slippage with P,+P>F
and P>F
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load F=n Df, but the dynamic load amplitude P is
lower than F (Fig. 16(b)). In this case, slippage will
occur only upon first-time loading, from J, to d,+9
(branch abb’ of the loop), while subsequent unload-
ings and reloadings will be sustained by the spring-
slider system without further slippage (branch b’cd
of the loop). In parallel, the static force applied on
the pile segment is reduced from P, to Pi=F—P.
Thus, neglecting permanent slippage upon first-time
loading, the equivalent linear elasto-plastic im-
pedance of the soil I is essentially equal to the
equivalent linear elastic impedance 7.

(b) The peak external load P+ P, as well as the dynam-
ic load amplitude P are larger than the yield load F'
(Fig. 16(c)). In this case, the static load is reduced to
zero during first-time loading, but this is not enough
to avoid slippage at the slider. Hence, slippage will
occur during all subsequent loadings and unload-
ings, whenever the dynamic load reaches the yield
limit (branches bb’ and cc’ of the loop). As a result,
the equivalent linear elasto-plastic impedance of the
soil I, represented by the slope of the diagonal b’c’
of the loop in Fig. 16(c), becomes smaller than the
elastic one I.. In addition, the proportion of hys-
teretic energy loss during cyclic loading will increase
as the load-displacement loop widens under con-
stant dynamic displacement amplitude J.

Figure 17 shows actual load-displacement measure-
ments from recently published experiments of two-way

30 —

20 -

-
o
|

Shear Transfer (kPa)
le]

'

-

o
I

. /I N N N B B
0.5 0.0 0.5 1.0 15 20

Displacement {mm)

Fig. 17. Results for two-way cyclic loading of a marine clay-steel inter-
face from field tests on an instrumented pile segment (Desai and
Rigby, 1997)

cyclic loading of a marine clay-steel interface (Desai and
Rigby, 1997). It may be observed that the model behav-
iour presented earlier resembles fairly well the experimen-
tal results. Furthermore, due to its simple analytical for-
mulation, it allows expression of the relative effects of
slippage on the dynamic soil stiffness and damping
through closed-form relations.

Based on the geometry of the load-displacement loop
in Fig. 16(c), the relative effect of slippage on dynamic
soil impedance may be written as:

I,=IL(F/P)=L(f/t)<I (38)

where 7;is the dynamic shear stress that would have devel-
oped at the pile-soil interface if slippage had not oc-
curred, and fis the skin friction.

It is important to note here that f depends upon the
rate of loading and consequently it is not necessarily the
same with the skin friction under static loading. This is es-
pecially true for clayey soils, which generally have a more
pronounced viscous behaviour, where reported ex-
perimental values for dynamic loading exceed static
values by 50% or more (Bea and Audibert, 1979; Kraft et
al., 1981; Bergdahl and Hult, 1981). The same data sug-
gest that, in the absence of site specific test results, f
should be increased relative to its static value by about
10-15% for each ten-fold increase in the rate of loading.

To account for the hysteretic energy loss due to slip-
page at the pile soil interface, an equivalent damping
ratio & is obtained that must be added to the hysteretic
damping ratio of the soil £. Based on the area of a com-
plete loop A E; and the equivalent elastic energy E,=(1/
2)F 3, & is written as follows:

&=(1/4An)AE,/ E;= 2/ m)(1—f] ©). (39)

The dynamic impedance parameters K, and C, of the
equivalent linear Winkler springs and dashpots, may be
subsequently derived from combination of Egs. (38) and
(39) as follows:

K, {KZ n<f @1
K.(flt) wu=f
and
Cp= {Cz us/ (42)
C(f/t)+2,Ks/ 0 Ti=f.

The resulting variation of elasto-plastic impedance
parameters K, and C; are plotted in Fig. 18 as functions
of the cyclic shear stress ratio 1;/f, for two extreme
values of the dimensionless frequency parameter:
a;=0.1, corresponding to quasi-static cyclic loading, and
a;=1.0, corresponding to high frequency dynamic load-
ing. It may be observed that the effect of slippage on each
impedance parameter is different. Namely, K, is systemat-
ically lower than K, regardless of loading frequency,
while C is practically the same as C, for quasi-static
cyclic loading and systematically lower than C, for high
frequency dynamic loading.

According to Eq. (41), these differences can be attri-
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a=0.1

Cus/2NnRp Vg

a;= 0.1

Ti/f

Fig. 18.

buted to two counteracting mechanisms which control
the dashpot parameter Cy:
(a) the hysteretic energy loss at the pile-soil interface,
which is inversely proportional to frequency w, and
(b) the reduction of radiation and hysteretic damping
in the soil, in proportion to the shear stress ratio f/
1;, which is nearly independent from frequency w.
At low frequencies mechanism (a) is relatively more sig-
nificant and may overshadow mechanism (b), while at
higher frequencies this mechanism is gradually reversed.
To support this interpretation, the dashed lines in Fig.
18 represent the computed values of C;; when the addi-
tional hysteretic damping due to slippage is not taken
into account. In that case, the effect of slippage is solely
dominated by the aforementiond mechanism (b), and
consequently the elasto-plastic dashpot parameter is sys-
tematically reduced at low, as well as at high frequencies.

CONCLUSION

Analytical solutions are provided for the radial varia-
tion of soil properties and the corresponding dynamic
soil impedance based on experimental data for the non-
linear soil response and the slippage at the pile soil inter-
face. In addition, the effects of these mechanisms are eval-
uated with the aid of parametric analyses for different
loading characteristics, pile geometries and soil proper-
ties. The main general conclusions derived from these
analyses are the following:

(a) Dynamic shear stress amplitudes induced to the soil

T/ f

Effect of slippage at the pile-soil interface on the dynamic impedance parameters K, and C,

decrease with radial distance away from the pile. The rate
of decrease becomes slower with increasing frequency of
vibration and is practically independent of the initial (at
rest) radial distribution of soil properties.

(b) Due to non-linear soil response, the dynamic shear
modulus of the soil increases, and the hysteretic damping
ratio decreases with radial distance. These changes are
rapid within a distance of 2-4 pile radii, and become
more pronounced as the intensity and the frequency of
dynamic loading increase, while the soil becomes less
plastic.

(¢) Soil nonlinearity reduces significantly the dynamic
soil impedance, expressed by the moduli of the equiva-
lent-linear Winkler springs and dashpots, relative to the
values for a linear soil with the non-degraded properties
of the free-field. As with soil properties, the degradation
of soil impedance becomes more pronounced as the inten-
sity and the frequency of dynamic loading increase, and
the soil becomes less plastic.

(d) Slippage at the pile-soil interface may reduce fur-
ther the soil impedance, mainly in the case of two-way
cyclic loading (compression-extension) with reversing
slip. For the equivalent linear Winkler springs, this effect
is systematic and practically independent of loading fre-
quency. On the other hand, for the corresponding
dashpots, slippage becomes practically important at rela-
tively high frequencies of loading only.

(e) The analytical predictions of non-linear dynamic
soil impedance may be expressed with reasonable accura-
cy by relatively simple, closed-form relationships.
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APPENDIX I: DYNAMIC AXIAL RESPONSE OF
PILES SUPPORTED BY NON-
LINEAR (WINKLER) SPRINGS

AND DASHPOTS

The dynamic moduli of the Winkler springs and
dashpots derived in the article may be consequently used
to compute the dynamic axial response of single piles em-
bedded in non-linear soil. The procedure which has to be
followed for this purpose is basically the same as for piles
in linear soil, and may be briefly outlined with the aid of
Fig. I.1. For harmonic steady-state oscillation of the pile,
expressed in the form:

A(z, t)=35(z)e™" an
dynamic equilibrium of a pile element requires that:
d*d(z)

dz?
where z denotes the depth from the ground surface, E
and S denote the Young’s modulus and the cross-section-
al area of the pile while m is the mass of the pile per unit
length.

The general solution of this equation is written as (e.g.
Makris and Gazetas, 1993):

ES — (K +iwCyu—maw?)d(z)=0 1.2)

6=AleQz(cos6+isin€)+A2e—Qz(cos€+isin9) (13)

where

_ [ Ks—ma?y + (@Cy)*]*
o= (ESY: (1.4
and
wCiy
tan (29)=m . (1.5)
P e“

—m%}—w
it

K,

Ko Co

Fig. 19. Winkler model for a vertically vibrating pile (based on
Makris and Gazetas, 1993)

For a given load or displacement amplitude applied to
the pile head, the integration constants A4, and A, are
computed by enforcing the continuity of stresses and dis-
placements along the pile axis and assuming appropriate
values for the spring and dashpot moduli supporting the
pile tip (K,, Cp in Fig. 1.1).

As a result of soil nonlinearity, Eq. (1.3) is an implicit
relation since J is expressed as a function of Ky and Cy
which, in turn, depend upon J. Hence, an iterative solu-
tion has to be followed in order to obtain the pile
response. Details on this procedure are provided by
Michaelides et al. (1997).

LIST OF MAIN SYMBOLS

II.1 Latin Symbols
a non-dimensional frequency parameter, defined in terms of the

free-field shear wave velocity and the radial distance
(a=wr/Vyp)

a; the value of @ corresponding to the pile-soil interface
(@=wR/Vp

C, frequency dependent modulus of equivalent Winkler dashpot
C, frequency dependent modulus of equivalent Winkler dashpot
with effect of slippage
D diameter of pile element (=2R)
/f unit skin friction
F yield load of the pile-soil interface
g damping factor depending on soil plasticity
Guax shear modulus of soil for very small shear strain amplitude
(y<107%)
G shear modulus of soil at radial distance r from the pile axis
Gy free field (elastic) shear modulus of soil (Gy= Gpay)
G; shear modulus of soil at the pile-soil interface (r=R)
G* complex shear modulus of soil at radial distance r from the pile
axis
G7 complex shear modulus of soil at the free field
G¥ complex shear modulus of soil at the pile-soil interface (r=R)
H Hankel functions
I, composite (complex) dynamic soil impedance
I, composite (complex) dynamic soil impedance with effect of slip-
page
J Bessel function of first kind
K, frequency dependent modulus of equivalent Winkler spring
K, frequency dependent modulus of equivalent Winkler spring
with effect of slippage
P,, static axial load of pile element
P dynamic axial load amplitude of pile element
r radial distance from pile axis
R pile radius
V shear wave velocity of soil at radial distance r from the pile axis
Vi free field (elastic) shear wave velocity of soil
V; shear wave velocity of soil at the pile-soil interface (r=R)
Y Bessel function of second kind
I1.2 Greek Symbols
o (=wr/V;) nondimensional frequency parameter, defined in
terms of the shear wave velocity at the pile-soil interface and the
radial distance
a; (=wR/V;) the value of « at the pile-soil interface
J,, static axial displacement of pile element
¢ dynamic axial displacement amplitude of pile element
d, yield displacement at the pile-soil interface
& hysteretic damping ratio
&y free field hysteretic damping ratio [£z=0.016g(ip)]
¢; hysteretic damping ratio at the pile-soil interface (r=R)
7, static shear stress at radial distance r from the pile axis
7 dynamic shear stress amplitude at radial distance r from the pile
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axis
w circular frequency
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